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ABSTRACT
Autonomous virtual agents generally lack the support to un-
derstand a fundamental character in their world — the user’s
avatar. This has a negative impact on their behavioural be-
lievability. In this paper, we present an approach to detect
the intent underlying certain actions of the user. We begin
by introducing the relation between intention and action,
then proceed on elaborating a framework that can interpret
the intent of an action based on the matching and mismatch-
ing of anticipated behaviour. We then present a test-case in
which our framework is used to create an agent architecture
controlling a virtual dog that interacts with the user within
a virtual world. Finally, we discuss three aspects of our eval-
uation: the user’s intent recognition, its interpretation and
the solution’s efficiency. Our results suggest that our solu-
tion can be used to detect certain intents and, in such cases,
perform similarly to a human observer, with no impact on
computational performance.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms
Algorithms, Human Factors

Keywords
Virtual Agents in games, Modelling other agents, Intention
recognition, Anticipation

1. INTRODUCTION
In an interactive virtual world, it is but a common sce-
nario for virtual agents and the avatar controlled by the
user to interact with each other. Because of their role in
the virtual world, some virtual agents (e.g. sidekicks [7] in
computer and video games), interact with the user’s avatar
during long periods of time. As time passes, the user pro-
gressively creates expectations regarding the virtual agent’s
behaviour based on the experience they share together. The
virtual agent, on the other hand, usually remains the same
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independently of its past interactions with the user. The
virtual agent lacks the capacity to generally understand the
user and as such is unable to create expectations about her
behaviour. This lack of adaptation becomes critical as it
may be enough to break the user’s suspension of disbelief
[15].
Researchers in Artificial Intelligence have been tackling
the problem of believability for characters in an interactive
environment for nearly two decades. Back in 1992, Bates de-
fined a believable agent as an interactive character that does
not disrupt the user’s suspension of disbelief [2]. He argued
that a character does not need to have a complex behaviour
to appear believable and Loyall, arguing in the same direc-
tion, stated that it is not necessary for a synthetic character
to be fully realistic. If the character, at some point, is able
to display specific and context-aware behaviour, it could be
enough for the viewer to portrait it as having a life of its own
[8]. An example is the work of Martinho and Paiva [10], in
which a virtual agent tries to anticipate what the user will do
and reacts emotionally whether it is disappointed or excited
about what happens in the virtual world based on its expec-
tations. Although anticipation has rarely been considered
when creating believable agents, Martinho [9] highlights it as
an essential part of the creation of believable behaviour and
shows how powerful it can be in producing context-aware
behaviour virtual agents need to feel alive.
Anticipating what the user’s avatar will do in the virtual
world is just the first step. The reason why the user did
a certain action is just as important as the action itself,
as it might change her understanding of her surroundings.
Blumberg [3] stated that understanding the intentionality
underlying a synthetic character’s behaviour is an important
aspect of believability. Should not it be just as important for
the character to understand the user herself? Tomlinson et
al. [15] argued that one of the key-aspects to create believ-
able behaviour is the ability to react according to the user’s
actions and the intention underlying them. This includes,
first, understanding the user’s intention and, then, enabling
the character to express an adequate behaviour in context.
In this work, we focus on the problem of understanding the
user’s intention. Recognizing the user’s intentions will pro-
vide virtual agents interacting with her the ability to express
behaviour that matches the situation. Because our work is
aimed at real-time interaction in resource intensive applica-
tions (e.g. computer and video games), computational cost
is a fundamental constraint. Our solution will have to be
lightweight to be usable.
The remainder of this paper is divided as follows. First,
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we model the relation between intention and action based
on a philosophical approach, and discuss how action can
be divided into movement, target and intent. We then dis-
cuss how each concept can be applied in the context of vir-
tual worlds. Afterwards, we propose an anticipation-based
framework (DogMate) to detect, from a virtual agent per-
spective, the intent underlying some of the user’s actions.
The following section describes our test-case (K9) that ex-
emplifies how our framework can be used to control the be-
haviour of a virtual agent (in this case, Rusty, the user’s
dog companion). The evaluation of our test-case follows,
focused on three aspects: intent recognition, intent inter-
pretation and solution’s efficiency. Finally, we conclude and
present a few directions to further pursue this work.

2. MODEL OF INTENTION
The problem of intention recognition is usually regarded
as one of action, goal or plan recognition. However, several
authors, namely in psychology literature, make a distinc-
tion between actions and intentions in the sense that one
action may be triggered by several different intentions and
that the same intention may also trigger different actions. In
his work, Heinze [6] make such distinction by separating the
process of intention recognition in three steps: sensing the
world, inferring an action from that information and extract-
ing an intention from it. Two of the six design patterns that
he proposes to implement intention recognition are useful
when considering the intending agent as human. Our work
follows a similar approach to the sense-and-infer pattern, in
which we gather low-level information from the environment,
reason about it to infer an action and extract its intention.
This process is usually regarded as keyhole recognition as we
try to infer the intention of the user through non-interactive
observations. Although the main idea is usually to match a
set of recognised actions against a plan library [5], Albrecht
et al. [1] choose to identify the next action of the player
as soon as possible. Here, we opt to follow the same line
of investigation. In practice, however, their system needs a
significant amount of data for prediction [1]. In our work,
we focus to predict the user’s next action based on local
knowledge, thus requiring a lesser amount of data.
One approach particularly relevant to the modelling of
intentions for our work came from philosophy. In his essay
on intentions, Searle [14] distinguishes two level of intentions
and relates them to actions as follows:

prior intention
𝑐𝑎𝑢𝑠𝑒𝑠−→

𝑎𝑐𝑡𝑖𝑜𝑛︷ ︸︸ ︷
intention in action

𝑐𝑎𝑢𝑠𝑒𝑠−→ bodily movement

Searle states that while a prior intention (a notion similar
to premeditation) may lead to an action, an action may
exist without a prior intention, but has to contain both an
intention in action and a bodily movement. Consider an
example in which someone wants to enter a building (prior
intention). First, he needs to open the door (action). The
action of opening the door has an intention in action (the
desire to open the door) and a bodily movement (the actual
opening of the door). The relation between intention and
action is important as, in interactive virtual worlds, every
change caused by the user to the application is a result of
an action of the avatar the user controls.
The Belief-Desire-Intention model (BDI) [4] introduced

the concept of intention in agent architectures [13]. In the
BDI model, intention refers to the “volition to accomplish a
plan of actions”, a definition similar to Searle’s prior inten-
tion. In the BDI model, similarly to Searle, an intention is
fulfilled through action, and the decision process generally
relies on having access to the agent internal state. When
considering the user of an interactive virtual world, how-
ever, the application can only access the sequence of inputs
that the user introduces through the input devices (rather
than her internal state). All the information is information
about her avatar, limited by the rules defined by the inter-
active virtual world. As such, the intentions we are trying
to recognize are those of the user’s virtual representation,
which might differ from her real intentions.
Guided by the previously described approaches, in this
work, we model an intention as leading either to other in-
tentions or actions (fig.1). The action itself is composed by
three components: (1) movement (e.g. getting closer to, us-
ing an item); (2) target (e.g. another agent, a static entity);
and (3) intent (e.g. attacking, picking up, talking).

Figure 1: Model of Intention.

For instance, consider that the user moves her avatar to-
wards the door of a building. This action could be defined
has having “getting closer” as the movement component, the
“door” as he target and (most probably) “opening the door”
as the intent component.
As a first step in detecting user’s intentions, in this work,
we focus on the detection of the intention in action underly-
ing the user’s actions (henceforth designated as intent), and
leave prior intentions for future work.

3. COMPONENTS OF AN ACTION
The logic underlying the rules of most virtual worlds is
inherently constrained by the graphical structure in which
the action takes place [11]. Mutual interaction between en-
tities can often be reduced to two fundamental components:
movement and collision detection. Therefore, the concept
of distance is fundamental to understand what is happening
in the virtual world. As an example, consider a virtual dog
agent trying to bite another virtual agent. To be able to
catch its opponent, the virtual dog will need to reduce the
distance between them until it is close enough to perform
the action of biting the other agent.
As a first step, we perceive all that is happening in the
virtual world by reducing everything to distance variations
between entities. If the distance between two entities is be-
low a certain threshold, then something happens. These
entities can be intentional or static. Intentional entities are
able to move and act on their own and, as such, have in-
herently an intent associated with that movement, while
static entities can only be acted upon, and have no inten-
tional state attributed, although displaying certain stimulus-
response compatibility (affordances): if a virtual agent ap-
proaches a closed door, it probably intends to open it.
Because we reduce everything to distance variations, de-
tecting the user’s intention is, in our approach, to under-
stand why the user’s avatar is moving towards or away from
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certain entities. Because distance varies generally in a con-
tinuous manner, expectations can be created regarding dis-
tance variation. Such expectations, when violated, can be
used as temporal signals that new intentions may have been
generated by unpredicted change in the action. The next
sections discuss how the three components of the action —
movement, target, and intent — are computed in our model.

3.1 Movement
A first problem in the detection of the user’s avatar intent
is to detect when a new action begins. For that effect, we
use movement. Consider that the user’s avatar is moving
in the direction of a certain entity (a door) in a predictable
manner. At a certain point, it unexpectedly changes direc-
tion and moves towards another entity (an enemy). While
all this happens, Rusty, our virtual dog, is observing. Figure
2 depicts such a situation.

Figure 2: An unexpected movement from the user’s
avatar may mark the beginning of several actions.

We consider this event marks the moment the user’s avatar
decided to interact with the new entity. While unable to de-
termine the start of any action until that point, Rusty is
now confident that the user’s avatar started a new action:
to go toward the enemy. It is important to note that another
action also started: getting away from the door.
In practice, we monitor the distance variation between
pairs of entities. When an unexpected variation occurs, it
marks the start of a new action: if the first derivative of
the distance between entities is negative, they are moving
closer; if positive, they are moving away from each other.

3.2 Target
When monitoring the distance between an intentional (e.g.
user’s avatar) and a static entity, we know that when the
distance changes, the intentional (not the static) entity is
moving. When both entities are intentional, however, other
measurements are needed to disambiguate between possi-
bilities for agency. Consider, for instance, that distance be-
tween the user’s avatar and another virtual enemy agent has
decreased more than expected. In this case, there are three
possible scenarios: either the user’s avatar or the enemy
moved closer or both moved closer to each other.
To determine agency, we monitor the entities relative ve-
locities. When the velocity of an entity changes unexpect-
edly, we assume it may also influence distance between enti-
ties in an unexpected manner. As such, if we monitor both
an unexpected distance variation as well as an unexpected
velocity variation of an entity, the entity is considered re-
sponsible for the movement, and the other entity is marked
as the target of the movement. In such cases, four combi-
nations are possible: the user’s avatar is getting {closer to,
further away from} the agent; the agent is getting {closer
to, further away from} the user’s avatar.

3.3 Intent
The last component of an action is its intent. The intent
results from a natural combination of movement and target.
As discussed previously, the rules underlying virtual worlds
are mostly based on distance variation and collision detec-
tion: if the user’s avatar wants to interact with an entity, it
first needs to reach within activation range of the entity. By
detecting the movement of “getting closer”, we can devise
the intent based on the affordances of the target, i.e. the
type of interactions allowed by the target entity. The same
reasoning can be applied for “getting away from”.
Consider an example in which Rusty notices the user’s
avatar moving closer to (movement) an enemy (target). From
the affordances given by the enemy entity, Rusty assumes it
must be to attack it (intent). If the user’s avatar was to move
toward the building’s door, Rusty would assume it would be
to open it (the only thing one can do to a closed door in the
virtual world). If she would move her avatar away from an
enemy, Rusty would assume she wanted to avoid him.

4. DOGMATE FRAMEWORK
The previous section described how the components of
an action are created by confronting expectations to the
virtual agent’s perceptions. When the perception is out-
side of the prediction range, our model assumes that a new
action (movement, target, intent) was detected. As such,
one primary concern when using our model is the ability to
make predictions. Additionally, each time a virtual agent
is considered to have an unexpected movement, several ac-
tions may be detected simultaneously (the virtual agent gets
closer or further away from other entities with every move-
ment). Thus, we need to be able to classify and compare
the relevance of each action. Finally, we want our virtual
agents to interpret the virtual world according to their own
point of view.
In this section, we present DogMate, a framework for gen-
erating intents in a virtual world from an agent perspective.
We start by addressing the three enunciated concerns, then
discuss the flow of execution within an agent architecture.

4.1 Predictors
To fully identify an action, we make use of three predic-
tors between pairs of entities. One estimates the distance
variation between the entities (to determine movement) and
two estimate each entity’s relative velocity (to determine
agency). We currently use the euclidean distance as it rep-
resents a good trade-off between estimation accuracy and
computational cost. Our predictors are implemented using
the following equations:

𝑑𝑡 = 𝑑(𝑡−1) +
ˆ̇
𝑑𝑡 (1)

ˆ̇
𝑑𝑡 = 𝑑(𝑡−1) +

ˆ̈
𝑑𝑡 (2)

The expected distance at time 𝑡 (𝑑𝑡) depends on the ex-

pected velocity
ˆ̇
𝑑𝑡 (eq. 1) which, in turn, is based on the

expected acceleration
ˆ̈
𝑑𝑡 (eq. 2). To estimate the accelera-

tion, we use the following equation:
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ˆ̈
𝑑𝑡 =

𝑛∑
𝑖=1

𝑑(𝑡−𝑖) − 𝑑(𝑡−(𝑖+1))

𝑛
(3)

We predict the acceleration (eq. 3) by applying a moving
average [12] to the last 𝑛 sensed accelerations. Empirically,
we found that a moving window of 𝑛 = 3 gives adequate
results, as the window is small enough to adapt quickly to
acceleration change, while large enough to mitigate small
acceleration variation due to the noise present in the original
signal.

4.2 Relevance
In figure 2, Rusty observes an unexpected movement of
the user’s avatar which generates two actions: “getting closer
to the enemy” and “getting away from the door”. However,
the user probably only intended to make one of them. While
both may contain relevant information for decision-making,
it is important to be able to quantify and classify their rel-
ative importance for the virtual agent.
To express the relevance of the action for the virtual agent
at time 𝑡 (𝑅𝑡), we use the following equation, representing
the degree of unexpectedness of the sensed value:

𝑅𝑒𝑛𝑡
𝑡 =

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟𝑒𝑛𝑡
𝑡

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟𝑒𝑛𝑡
𝑡

=
𝑒𝑟𝑟𝑒𝑛𝑡

𝑡

ˆ𝑒𝑟𝑟𝑒𝑛𝑡
𝑡

=
∣𝑥𝑒𝑛𝑡

𝑡 − �̂�𝑒𝑛𝑡
𝑡 ∣

ˆ𝑒𝑟𝑟𝑒𝑛𝑡
𝑡

(4)

In equation 4, 𝑥𝑡 and �̂�𝑡 represent the sensed and expected
value, respectively. By computing relevance as a ratio, we
make the prediction independent from the metric it mea-
sures (or even its range). When 𝑅𝑒𝑛𝑡

𝑡 > 1, we say that the
signal is salient and that an expectation violation occurred.
The expected error ( ˆ𝑒𝑟𝑟𝑡) gives us a margin in which a
sensed value might differ from the expected value and still
be considered as an expectation confirmation. We compute
it using the following equation:

ˆ𝑒𝑟𝑟𝑒𝑛𝑡
𝑡 = 𝑘 × 𝑒𝑟𝑟𝑒𝑛𝑡

(𝑡−1) + (1− 𝑘)× ˆ𝑒𝑟𝑟𝑒𝑛𝑡
(𝑡−1) (5)

The variable 𝑘 takes values within the [0, 1] interval. A
high value for 𝑘 allows the estimation to adapt quickly to
huge variations, while a low value makes the estimation more
conservative. When an unexpected event occurs, the accel-
eration predictors need a certain time-frame to re-adapt to
the signal and emit correct predictions once again. Within
this time, it is important to avoid detecting a false unex-
pected event as a result of adaptation. After adapting to
the new signal, prediction error (and consequently the ex-
pected prediction error) will decrease.
Let us exemplify how prediction and relevance work using
the scenario from figure 2. The user initially moves her
avatar toward an intentional entity (an enemy, 400 units
away) and toward a static entity (a door, 700 units away).
Current expectations are that the distance to the enemy
(�̂�𝑡) remains nearly the same and the distance to the door
decreases to 650 units. Because our predictions have been
accurate this far, we expect a low prediction error in both
cases: 10 units. Now, the user broke our expectations and
is (𝑥𝑡) closer to the enemy (300 units away from the enemy)
while further away from the door (the distance to the door

increased to 750 units): 𝑅𝑑𝑜𝑜𝑟 = ∣750−700∣
10

= 5; 𝑅𝑒𝑛𝑒𝑚𝑦 =
∣300−400∣

10
= 10. Analysing these values, we can say that the

action to go toward the enemy is two times more relevant
(unexpected) than the one to go further away from the door.
We assume that the more unexpected an action is, the more
likely the user meant to do that action intentionally (in this
case the action to go toward the enemy).
With this model, we are not only able to distinguish ac-
tions and order them by relevance. If we combine relevant
changes in both inter-entity distance and relative velocity,
we can decide what entity is responsible for the action (the
other entity being considered the target of the action). In
this case, if the virtual enemy agent had a relevant change in
relative velocity, it would mean the enemy started to attack
the user’s avatar, while if the relevant change occurred with
the relative velocity of the avatar, the user’s avatar would
have initiated combat.

4.3 Affective Appraisal
To model the intent interpretation from an agent’s per-
spective, we appraise the intent inspiring ourselves in the
emotivector’s sensation model [9]. First, we set desired (and
undesired) values for distance, depicting where the virtual
agent would like the distance between two entities to be (or
move away from). Then, when a relevant change occurs in
the sensed distance between the two entities, we compare the
sensed value, the expected value and the desired/undesired
value to produce an affective state. If the sensed value is
closer to the desired value, it is considered a positive sen-
sation. If it was expected to be even closer it is a “positive
but worse than expected”, if not it is a “positive and even
better than expected”. The same applies if the sensed value
is diverging from the desired value, but in such case it is
considered a negative sensation. The reasoning for getting
closer or away from undesired values is similar. As a result
of this affective appraisal, one of four affective states is gen-
erated for each unexpected change. The affective states will
influence the virtual agent’s decision making.
As an example, consider that Rusty sees the user’s avatar
is hurt. Rusty desperately wants the user to avoid any
threat, by setting an undesired value of 0 for the distance
between the user’s avatar and any virtual enemy agent. Con-
sequently, if it detects the user has an intent to attack an
enemy, he will view that intent as bad for the user (the
sensation will be a negative one). Based on this personal
interpretation, Rusty will assume a context-specific strategy
and display an adequate context-aware behaviour, totally
different from the one resulting from appraising the event as
positive.

4.4 DogMate’s Flow
We now have described all elements needed to recognise
actions and their underlying intents, to appraise and classify
them. DogMate (represented in fig. 3) is the name we gave
to this framework and we now review its flow during one
update cycle. Let us, again, turn to the example depicted in
figure 2 from Rusty’s perspective. Let us also consider that
Rusty knows that the user’s avatar has an objective: to
break through the building to invade it. Rusty also knows
that the player-character is healthy enough to handle a few
enemies. These are his current beliefs and we use them to set
the desired value of predictors (1 in fig. 3) such that reducing
the distance toward enemies or the door is considered as
positive within this context. Rusty’s beliefs also contain
information about the position of entities that Rusty can
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sense (i.e. within a certain radius). This information is fed
to the predictors at each cycle.

Figure 3: Flow in DogMate.

To represent the possible actions between the user and an
entity we use a set of predictors. One distance-based predic-
tors and two additional velocity-based predictors in the case
of an intentional entity (2). The user is currently moving
her avatar through the world and is reducing her distance
to both the door and the enemy. Suddenly, something unex-
pected occurred: the avatar reduced drastically its distance
to the enemy and the distance to the door increased. At
this time, the distance-based predictor in both sets became
salient (3). In the set of the door (a static entity), we only
have one predictor so we know that the user is getting fur-
ther away (movement) from the door (target). In the second
set, the predictor that monitors the relative velocity from
the avatar to the enemy is also salient. This pattern means
that an action was initiated by the user, whose target is the
enemy, and her movement is to get closer to it. Two intents
are produced based on these recognised patterns (4).
Because Rusty knows that the user’s avatar can handle
another enemy, the distance-based predictor leads to the
emission of a positive sensation (5) which makes Rusty in-
terpret that distance reduction (and the corresponding in-
tent to attack) as beneficial for the user. On the other hand,
because Rusty wants the user to complete his objective, he
interprets the increased distance to the door as negative and
consequently views with bad eyes the disinterest of the user
in completing her task.
Finally, these intents are forwarded to the decision mak-
ing module (6) and compared to each others to select the
decision that Rusty will adopt. Because the predictor that
monitors the player-character’s relative velocity to the en-
emy is the most salient of them all, we select that intent
as the one that will make Rusty react. As such, Rusty en-
courages the user’s action through verbal and non-verbal
behaviour.
In the next section, we describe how we integrated this
framework within K9, our test-case, to control Rusty acting
as the user’s dog sidekick within a computer game.

5. TEST-CASE: K9
K9 (“Canine”) is a small role-playing game environment
used as a test-case for our framework. Not only K9 but the
whole implementation of this work was built based on the
modding framework of Fallout 31 (FO3) and takes full use

1Bethesda, Fallout 3 (2008): http://fallout.bethsoft.com/.

of its game mechanics. In K9’s story, the player-character
(the user’s avatar) ends up being kidnapped and used as
an experiment in genetic tests. The result is that he finds
himself linked to his own dog, Rusty, and is not only able to
feel what Rusty feels but also to understand him.
In this section, we first present the interaction between
FO3 and Rusty’s Mind, the component which includes Dog-
Mate, then we describe how intents were used to control the
behaviour of Rusty in the game.

5.1 Interacting with DogMate
Our implementation resides within an independent com-
ponent (Rusty’s Mind in fig.4) composed of DogMate and a
world interface which contains sensors and effectors.

Figure 4: Interaction between K9 and Rusty’s Mind.

First, let us outline the general flow that corresponds to
the mind being updated (fig.4). It starts from within K9’s
scripts (1a). At this point, information about the world is
sensed so that we only consider detected enemies and rele-
vant entities (1b) from Rusty’s perspective. This informa-
tion is stored in DogMate’s beliefs. DogMate performs its
update cycle, eventually detecting the intents of relevant vir-
tual agents. As the result of its cycle, DogMate sends primi-
tives corresponding to the selected behaviour for Rusty. We
store this information in a buffer (1c), the effectors, and in
the end of the K9 cycle, the script checks which was the deci-
sion (2). Within the FO3 engine, this information is used to
execute verbal and non-verbal behaviour for Rusty. Rusty’s
behaviour consists of an animation coupled with its corre-
sponding sound and a subtitle that serves two purposes, to
reinforce Rusty’s barks and express his thoughts (in K9, the
player-character is able to understand Rusty).
The main purpose of the world interface is to act as an
interface between the engine and DogMate. It is responsible
to keep an up to date cache that replicates the game engine
information deemed relevant for our component. This infor-
mation is then culled using Rusty’s sensors and transformed
into its own beliefs. This information typically either rep-
resents the perception needed to update a predictor or its
desired value. The world interface is also composed of effec-
tors which consist in a buffer that stores the decision and
transmit it to the engine through the “SetDecision” invoca-
tion (2 in fig.4). The engine then makes Rusty behave in
the intended manner.

5.2 Rusty’s Behaviour
Rusty’s “natural” behaviour is to accompany the player-
character and help him along the way. However, whenever
his mind selects an intent, Rusty expresses its appraisal
of the intent based on several animations, each tied to a
unique affective state. The affective states are the sensa-
tions elicited when a predictor is salient.
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(a) Happy. (b) Surprised / relieved.

(c) Confused / fearful. (d) Angry.

Figure 5: Rusty can express four affective states.

We associated sounds like barking or panting to these an-
imations. In the “happy” animation (fig.5(a)), Rusty raises
his tails as he barks happily, to the sky, five times. When
he is surprised (fig.5(b)), with a touch of relief, he pants a
few times while waving his tails in a joyful manner. In con-
trast, when he is confused (fig.5(c)), with a touch of fear,
he lowers his head, whimpers and hide his tails in-between
his legs. Finally, when he is angry (fig.5(d)), he assumes a
serious and threatening pose in which he growls ferociously.
Along the animations, we reinforce Rusty’s expression by
using on-screen subtitles, that reflect Rusty’s own thoughts
as understood by the player-character.
Once a decision is retrieved from Rusty’s Mind, the en-
gine executes the corresponding set of animation, sound and
subtitle. In table 1 we show a few examples of the available
possibilities when the user displays the intent to attack or
avoid an agent while having having either a good or bad
physical condition to handle the confrontation.

Intent Condition Appraisal Thought / Counsel

Attack Good Happy “Oh yeah! Let’s get him!”

Attack Bad Angry “An enemy now? That would be bad...”

Avoid Good Angry “A little fight wouldn’t be that bad!”

Avoid Bad Happy “That’s it! Let’s avoid that one.”

Table 1: Examples of Rusty’s thoughts.

6. EVALUATION
In this work, we pursued several objectives. First, we
wanted to create a framework to support the creation of be-
lievable behaviour for virtual agents in general, by allowing
the detection of some of the virtual agents and user’s avatar
intentions. We were particularly interested in applying such
an approach to a particular role: virtual sidekick agents for
computer games, and this interest guided our development
to K9. To evaluate our approach, we focused on analysing
whether the framework could correctly detect the user’s in-
tentions. We were also interested in understanding how well
the recognition of intentions was performing when compared
to an external human observer. Finally, because we wanted
our approach to be applied to virtual environments found
in real-time applications such as video games, we wanted to
be aware of the performance. In the next subsections, we
review our experiment and discuss the results.

6.1 Experiment
To evaluate our test-case, we performed an experiment in
which we asked subjects to play the game. The experiment
took place at a public venue in which most participants were
university students whose age varied from 19 to 28. Before
asking them to start the experiment, we made sure that they
had a minimal knowledge of how to play the game. Once
ready, we asked them to play a session of K9’s main level, in
which their objective was to invade the enemy’s headquar-
ters. Each interaction lasted for two to three minutes.
Each game session was recorded through a screen capture
software. Immediately after finishing a session, we asked the
participant to annotate the recognized intents. For the an-
notation, participants could choose one of five available op-
tions: whether they wanted to attack an enemy or flee from
it; whether they wanted to open the door or were avoiding it;
the fifth option was to be used if their intent did not match
any of the previous four options. From this evaluation, we
gathered a total of 54 samples (instants in which Rusty ex-
pressed itself based on the user’s intent) from 9 different
participants.
Because human observers watching the game would also
fail at recognizing certain intents, we wanted to compare
the performance of our approach with that of a human ob-
server. Our motivation is that if the mismatch between the
real intent and the recognized intent can be understood as
natural by the user, it might appear as believable. How-
ever, for the user to understand Rusty’s reactions, she has
to interpret the situation from Rusty’s point of view. With
this idea in mind, we randomly selected 30 samples from the
54 available. We then published them on a video streaming
website. Although we lost some video quality, it gave us the
possibility to pursue the evaluation virtually. Our aim was
to reach a larger population this time and each participant
was asked to review the thirty samples and to classify them
using the same options previously available to the partici-
pants. With this approach we collected 820 valid samples
from 30 observers. We now discuss our results.

6.2 Intent Recognition
We gathered a set of 54 samples from the venue’s partic-
ipants and compared each of them against their respective
annotation. We found that the participant’s intent was rec-
ognized 61% of the time (see table 2).

Rusty samples matches %

user opens the door 17 13 76.47%
user attacks enemy 25 17 68.00%
“avoid” intents 12 3 25.00%

total 54 33 61.11%

Table 2: Matching Rusty’s recognized intent and
user’s intent.

During our tests, we found out that participants rarely fled
from an enemy (although being positively detected several
times). They also had a certain difficulty to express nega-
tive intents such as “avoiding an entity” because, in reality,
when they did so, it was mostly due to the fact that they
started to do something else (i.e. “to seek” another entity).
Comparatively, we achieved a recognition rate of 71% for
intents related to moving toward an entity (first two rows in
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table 2). These results support our assumption that if the
user moves her avatar toward an entity, she probably has
the intent to interact with it.
The gathered data also suggests that some refinements
could help increase the recognition performance. At the con-
ceptual level, it may be important to take the virtual agent’s
field of view into account (rather than only using a percep-
tion radius around the virtual agent, as implemented in K9).
Even if the user could be focusing her attention on some-
thing she cannot directly see (e.g. she wants to ambush an
enemy by making a detour around an obstacle and get in his
back), such information could be useful to confirm specific
situations and prune others. At the implementation level,
the notion of distance could be implemented differently. In
K9, we chose to use euclidean distance as a compromise be-
tween accuracy and performance. However, in a world with
a high number of obstacles (e.g. buildings, rocks, interiors),
this value may be inadequate. A more realistic value for
distance could be computed using path-finding algorithms.
However it is a costly process in virtual worlds of a dynamic
nature, and the added value for intent recognition remains
to be measured.

6.3 Intent Interpretation
We do not need realistic behaviour to achieve believabil-
ity, only to display specific and context-ware behaviour [8].
When Rusty fails to recognize the user’s intent, we do not
want it to break the user’s suspension of disbelief by display-
ing inadequate behaviour based on its failed intent recogni-
tion. If we ask a human observer to comment about the
possible intentions of his peer, he too might get some inten-
tions wrong. However, every time the observer recognizes an
intention, he can justify it based on his observation. Then,
if the user uses some theory of mind, and puts herself in
the shoes of the observer, limiting her own knowledge to the
information the observer had, she might agree with the ob-
server that the recognized intention could indeed be valid
from a certain point of view. As such, we wanted to ver-
ify whether Rusty succeeds or fails at recognizing the same
intents a human observer would succeed or fail to recognize.
We classified each sample according to whether Rusty
and/or the external observer had recognized correctly the
user’s intent (see table 3) and applied a Person’s chi-square
test, 𝜒2(1, 𝑁 = 820) = 18.31 (𝜌 < 0.001). Results suggest
that, generally, Rusty would recognize the same user’s in-
tents the human observer would, and fail to recognize the
same user’s intents the external observer would fail to rec-
ognize. As such, Rusty and external human observers seem
to perform similarly when it comes to recognizing intents,
leading us to believe that Rusty’s intent reaction may be
perceived as believable by the user.

Rusty ≈ Observer External observer
total

𝜒2 (𝜌 < 0.001) recognized not recog.

Rusty
recognized 377 272 649
not recog. 68 103 171
total 445 375 820

Table 3: Matching external observer’s interpreted
intent and Rusty’s recognized intent.

The 820 gathered samples also reinforce our previous state-
ment about negative intents. Subjects assuming the role

of observers also had difficulties in identifying such intents
as only 6.14% were correctly recognized (compared to 62%
positive intent recognition — see table 4). The small varia-
tion between Rusty’s performance and the lower human ob-
server’s performance may be related to the fact that Rusty’s
has access to information that is not always on the game
screen. This is desirable for virtual sidekick agents, as the
user will value the added understanding of the surrounding
virtual world, without feeling that the sidekick has access to
information the user simply cannot access.

Observer samples matches %

user opens the door 325 217 66.77%
user attacks enemy 381 221 57.40%
“avoid” intents 114 7 6.14%

total 820 33 54.27%

Table 4: Matching observer’s recognized intent and
user’s intent.

6.4 Limitations
The experiment helped us identifying several limitations
in our approach. First and foremost, not all actions’ intent
can be equally identified. Our results support that “moving
toward an entity” is correlated with the user intending to
interact with the said entity. However, our results also show
that “moving away from an entity” is not correlated with
the intent to avoid the same entity. As referred earlier, a
possible explanation is that users explained their actions by
stating they wanted to do something new and not by stating
they did not want to do an action anymore: if the user stops
attacking and moves away from a virtual enemy agent, she
might not be fleeing from it, she might just be looking for
something that suddenly appeared on the floor or attacking
another virtual enemy agent.
The second limitation is that our approach emits intents
that have no past history, as if each one was the first and
only detected intent. This results in duplicated and corre-
lated intents emitted disregarding their possible cause. If
the user gets surprisingly closer to an enemy and, seconds
later, her distance decrease surprisingly once again, two dif-
ferent intents are emitted while referring to a same intent:
to attack the virtual enemy agent. Also, attacking an enemy
might produce an intent that suggests that the user is flee-
ing from another one. This lack of history and correlation
between intents led to the emission of some false intents.

6.5 Computational Impact
A graphical application usually requires most of the hard-
ware resources to be dedicated to the graphics engine. When
each CPU cycle is crucial, the most important concern is to
sustain the graphical frame rate, as it is one of the most
noticeable aspects of the interaction for the end-user. With
this in mind, we aimed for a system with low resources re-
quirements: if it is to be added on top of current generation
game technology, then it has to be hardly noticeable.
Our first concern was the framework’s update rate. An
empirical test showed that 2 to 4 hertz tend to present good
results. Lower than 2 hertz seems unnatural as it takes
too much time between the user’s action and the intent’s
detection. Any frequency higher than 4 hertz seems to pro-
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duce the same unnatural behaviour, as if Rusty was reacting
immediately. In a special testing environment, we used 300
predictors divided into 100 sets, to solely monitor virtual en-
emy agents. This number is exaggerated, but should cover
most of the user’s potential centre of focus in a virtual world.
Even if we use more entities, those which are not relevant
for the user’s actual situation can be culled. Profiling this
instantiation of the framework did not show any significant
overhead (0.18% ) at 4 hertz.
Real-time constraints are mandatory in applications such
as computer and video games. While our solution only rec-
ognizes a subset of all possible intents, we would argue that,
with such a low impact on CPU cycles, it does recognize
them almost for free. As such, we defend this approach
could be used to help in creating believable behaviour for
synthetic entities inhabiting the virtual world.

7. CONCLUSION
Autonomous virtual agents generally lack the support to
understand a fundamental character in their world — the
user’s avatar. This has a negative impact on their behavioural
believability, as the virtual agents are unable to provide ad-
equate context-ware behaviour to the user. In this paper,
we provided a framework for recognizing some of the inten-
tions underlying the actions of other virtual agents sharing
the same virtual world. By understanding intentions in par-
ticular situations, we allow virtual agents to display specific
context-aware behavioural reactions and improve their per-
ceived believability.
Based on Searle’s definition of intention, we started by
modelling the relation between intention and action, and
discussed how an action can be divided into three compo-
nents: movement, target and intent. We then proceeded to
detail how the three components of an action can be detected
in a virtual world, based on the matching and mismatching
of anticipated behaviour related to distance change between
entities. We detailed how unexpected events are triggers
for new intents, which type depends on unexpected events
that become relevant simultaneously, and how an affective
appraisal provides the agents with a personal view on the sit-
uation. The whole process constitutes our framework (Dog-
Mate) that we implemented as an agent architecture.
A test-case (K9) was presented, showing how our frame-
work can be connected to a current generation game engine.
In K9, DogMate controlled the behaviour of a virtual dog
sidekick, Rusty, that interacted with the user within a vir-
tual world, and advised her based on the intents it would
interpret from the actions of her avatar. The test-case eval-
uation suggests that our framework can be used to iden-
tify some of the user’s intents and, at least in some tasks,
performs comparably to a human observer, an encouraging
result as we were mostly focused on the generation of be-
lievable behaviour. The results also show that while the
framework only recognizes a subset of possible intents, it
has a low computational impact, and as such is suited for
integration.
We believe the limitations identified during evaluation
could be addressed by introducing a higher-level layer that
would create a history of the intents to filter duplicates and
related intents. Additionally, the framework should also be
able to detect intentions in expected movement (e.g. while
exploring), by introducing prior intentions to the framework.
These will undoubtedly require new components to recog-

nize the user’s plans, their purpose and if an action is part
of it. All these are possible directions we are considering for
future work.
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